Evolving Image Segmentations for the Analysis of Video Sequences
نویسندگان
چکیده
A methodology for the segmentation of successive frames of a video sequence is presented. Traditional methods, treating each frame in isolation, are computationally expensive, ignore potentially useful information derived from previous frames, and can lead to instabilities in the segmentation over the sequence. The approach developed here, based on the Region Competition algorithm (Zhu and Yuille, IEEE Trans. PAMI, 1996), employs a mesh of active contour primitives, supervised by an MDL energy criterion, to partition the image into homogeneous regions. The inherently dynamic nature of the algorithm allows an initial segmentation to evolve in response to changes observed in the video sequence. Temporal extensions, namely Boundary Momentum, Region Memory, and Optical Boundary Flow, are developed to ease the transition between successive frames. Further enhancements are made by incorporating mechanisms to accommodate the topological discontinuities that can arise during the sequence (e.g. objects entering or leaving the scene). The algorithm is demonstrated using a number of synthetic and real video sequences and is shown to provide an efficient method of segmentation which encourages stability across frames and preserves the quality of the original segmentation over the sequence.
منابع مشابه
Adaptive Spectral Separation Two Layer Coding with Error Concealment for Cell Loss Resilience
This paper addresses the issue of cell loss and its consequent effect on video quality in a packet video system, and examines possible compensative measures. In the system's enconder, adaptive spectral separation is used to develop a two-layer coding scheme comprising a high priority layer to carry essential video data and a low priority layer with data to enhance the video image. A two-step er...
متن کاملSkeleton-based Temporal Segmentation of Human Activities from Video Sequences
This paper presents a new multi-step, skeleton-based approach for the temporal segmentation of human activities from video sequences. Several signals are first extracted from a skeleton sequence. These signals are then segmented individually to localize their cyclic segments. Finally, all individual segmentations are merged with respect to the global set of signals. Our approach requires no pri...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملVideo-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملتشخیص عابر پیاده با استفاده از کلاس بندهای SVM و هیستوگرام در توالی تصاویر مادون قرمز
Abstract In dark environments and foggy or smoky conditions where it is not possible to use eyesight and usual binoculars to detect human from other objects, the best solution is to use infrared images. This paper presents a robust method to recognize pedestrians in infrared image sequences. For this purpose, combination of SVM and histogram classifiers has been used. A pre-processing phase ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001